Vascular Smooth Muscle Cell Phenotype Switching in Carotid Atherosclerosis

Elizabeth L. Chou, MD
Massachusetts General Hospital
Vascular and Endovascular Surgery, PGY3
Cardiovascular Research Center

ELCHOU@mgh.harvard.edu
@LizChou
INTRODUCTION

- >100,000 CEAs annually
- ~↓50% asymptomatic
- ~↑50% with stroke/TIA
BACKGROUND: Carotid atherosclerosis
BACKGROUND: VSMCs

BACKGROUND: HDAC9

- “Healthy” VSMCs, express contractile genes
 - ACTA2, SM22, MYH11
- Disease triggers binding of complex and silences expression of contractile genes
 - Explore role of VSMC phenotype switching in carotid atherosclerosis

Lino Cardenas et al. *Nature Communications*. 2018
DESIGN:

Cell model
Primary human VSMCs treated with cholesterol and phospholipids

Animal models
Mice Hdac9⁻/⁻:Tagln-cre LDLR⁻/⁻ on high fat diet

Surgical Specimen
Molecular expression patterns and genetic data (control, asymptomatic, symptomatic)
RESULTS: Cell Model
RESULTS: Cell Model

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Chol:MβCD</th>
<th>OxPAPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VSMC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lipid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiCTRL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiHDAC9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

of migrated monocytes per frame

- **Control**
- **Control siHDAC9**
- **CH**
- **CH siHDAC9**

p < 0.05

<table>
<thead>
<tr>
<th>Incubation time</th>
<th># of migrated monocytes per frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 hr</td>
<td></td>
</tr>
<tr>
<td>12 hr</td>
<td></td>
</tr>
</tbody>
</table>

Graph:

- **Control**
- **Control siHDAC9**
- **CH**
- **CH siHDAC9**

p < 0.05
RESULTS: Cell Model

What is PN-1?

- PN-1 relative expression
- Fold change (vs Normal media)
 - SERPINE2
 - ACTN1
 - ANXA1
 - SPARC
 - PLOD1
 - ANXA2
 - LGALS3
 - PGK1
 - PRDX1
 - MMP2

0 2 4 6

Normalized mRNA expression

*** p<0.005

RESULTS: Surgical Specimen

Control
- Asymptomatic
 - n=35
- Symptomatic
 - n=24

Control
- n=13

Asymptomatic
- n=35

Symptomatic
- n=24
RESULTS: Surgical Specimen

Control n=13
Asymptomatic n=35
Symptomatic n=24
RESULTS: Surgical Specimen
NEXT: On the horizon

• What’s causing the change? How to stabilize the contractile phenotype to mitigate or prevent disease progression
 • What is PN-1
 • HDAC9 associated proteins and pathways

• Further delineate VSMC – macrophage relationship

• Unbiased discovery complex tissues – plaque, vasculature

• Exploring the potential of patient tissues
 • Similar models to expand our understanding of other vascular pathologies
NEXT: Banking for the future/now

- MGH Vascular Tissue Bank
 - Control tissues
 - carotid, segmental aortic arch, descending thoracic aortic, abdominal aortic tissue, lower extremity vasculature
 - Disease specific tissues
 - Marfan, vEDS, LDS, sporadic TAA, AAA, Type A and B dissection, carotid tissue, pulmonary veins with AF
 - Total of over 200 unique patients
Why use single nuclei sequencing

- Vascular tissues are composed of many different cell types which change in phenotype throughout health and disease
 - Agnostic approach to evaluate vascular tissue and discover its diversity

- Comprehensively assess the expression status of different cell types and changes in gene expression in health and disease
 - Identify rare cell populations that are specific to disease
 - Identify targets for treatment

- Why hasn’t this been done already?
TISSUE USE(S): Single nuclei analysis

- Tissue isolation
- Section, digest, homogenize, filter
- Filtered nuclei in suspension

- Nuclei captured with barcoded beads + reagents
- Nuclei are lysed and undergo reverse transcription
- Barcoded cDNA sequenced for analysis
CONCLUSION

• Preserving the VSMCs contractile phenotype may have a role in atherosclerosis and vascular tissue degeneration

• Vascular tissue is valuable
 • Patient’s role in research and discovery

• Surgical outcome improvement, quality of life, morbidity and mortality
 • Biology is inherently associated with outcomes
ACKNOWLEDGEMENTS

MGH Vascular Surgery
MGH CVRC
Lindsay Lab
 Christian Lino Cardenas
Malhotra Lab
Stone / Juric RA Program
Broad Bayer Precision
Cardiology Lab
 Patrick Ellinor

MGH CVRC T32HL007208
VESS Research Grant

Thank you!
Questions/Comments/Suggestions

✉️ ELCHOU@mgh.harvard.edu
@LizChou